Figure shows three resistor configurations (R_1) , (R_2) , and (R_3) each connected to 3 V battery. If the power dissipated by the configuration (R_1) , (R_2) and (R_3) is P_1 , P_2 and P_3 , respectively, then (2008)

(A)
$$P_1 > P_2 > P_3$$
 (B) $P_1 > P_3 > P_2$
(C) $P_2 > P_1 > P_3$ (D) $P_3 > P_2 > P_1$

Sol. In configuration (R_1) , the resistances form a balanced Wheatstone bridge. Effective resistance of this configuration is $R_1 = 2\Omega \parallel 2\Omega = 1 \Omega$. The effective resistance of the configuration (R_2) is $R_2 = (2\Omega \parallel 2\Omega) \parallel 1\Omega = 1\Omega \parallel 1\Omega = 0.5 \Omega$. The effective resistance of the configuration (R_3) is $R_3 = 2 \Omega$. Thus, the powers dissipated in the three configurations are

$$P_1 = V^2/R_1 = 9 \text{ W},$$

 $P_2 = V^2/R_2 = 18 \text{ W},$ and $P_3 = V^2/R_3 = 4.5 \text{ W}.$

Ans. C 🖸